BHASVIC

Preparation for Chemistry 2017

Name							
INAIIIC	 						

This pack has been put together to help you prepare to study A-level Chemistry with us at BHASVIC. Read it carefully and complete all of the questions. You need to bring it along every lesson for your first two weeks of lessons in September.

If you are not sure about an answer then look it up, it is the areas that you are unsure about that you most need to learn.

How about following us on social media to find out more about the department before you arrive?

Independent Study Tasks

Welcome to BHASVIC A-level Chemistry!

We are really looking forward to teaching you next year and helping you be successful. We expect you to work much more independently than when you were doing your GCSEs, so for each topic, we ask you to do some self-study before you come to lessons.

This pack is designed to help you practice the independent study activities we do in chemistry so you feel more confident when you arrive.

Throughout the tasks, we have directed you to useful videos and websites – make sure you use them to help you! It is OK to look up the answers if you get stuck but not OK to leave blanks.

All the videos can be accessed using the QR code or this link to blendspace:

https://www.blendspace.com/lessons/knW8q9un51zoAw/moving-on-day-2015

What do I need for September?

So you can get organised before you arrive, here is a list of the essential items you need for studying Chemistry at BHASVIC.

Items:	Details:
Basic scientific calculator	Approx. £8, most people have a Casio. This will be fine for any science subjects at BHASVIC.
Clear 30cm ruler	You need to be able to see through it when drawing lines of best fit and tangents on graphs.
Small ringbinder	For carrying your current work to and from college
 Large lever arch file and dividers 	To organise your notes at home
A black, blue and red pen	We use a three pen system for homework, so you'll need all three
 Lined paper 	,

We provide lab coats and safety glasses to use during practical work.

Have a great summer break! The BHASVIC Chemistry Team

Atoms, Ions and Compounds

Chapter 2, Specification 2.1.1-2.1.2

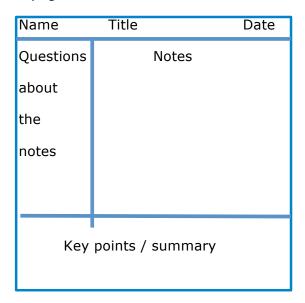
These are the learning outcomes **for the whole of the first topic**, some of which will be familiar from GCSE. You will start working on some now and *the ones in italics* will be introduced in lessons in September.

When you finish the pack, tick the appropriate boxes to indicate your progress. Don't worry if you don't feel confident with everything on the list yet.

By the end of the topic you should be able to demonstrate your knowledge and understanding of:

	Learning Outcome		_	
		I can recall this	I understand this	I need to revisit this
a.	isotopes (atoms of the same element with different numbers of neutrons and different masses)			
b.	atomic structure (working out numbers of protons, neutrons and electrons for atoms and ions, given the atomic number, mass number and any ionic charge)			
c.	 explaining: relative isotopic mass (mass compared with 1/12th mass of carbon-12) relative atomic mass (weighted mean mass compared with 1/12th mass of carbon-12), the use of the mass of a ¹²C atom as the standard for atomic masses 			
d.	the use of mass spectrometry in: (i) determining relative isotopic masses and relative abundances of the isotope, (ii) calculating the relative atomic mass of an element from the relative abundances of its isotopes			
e.	 the use of relative molecular mass, M_r, and relative formula mass calculating them from relative atomic masses 			
f.	writing the formulae of ionic compounds, including: (i) predicting ionic charge from the periodic table (ii) recalling the names and formulae for the following ions: NO ₃ ⁻ , CO ₃ ²⁻ , SO ₄ ²⁻ , OH ⁻ , NH ₄ ⁺ , Zn ²⁺ and Ag ⁺			
g.	constructing balanced chemical equations with state symbols (including ionic equations)			
h.	explaining and using the terms: (i) amount of substance (ii) mole (the unit for amount of substance) (iii) the Avogadro constant, N_A (the number of particles per mole) (iv) molar mass (mass per mole)			
i	mole calculations, involving mass			

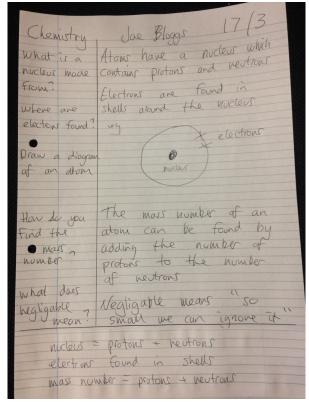
Brady explains ... Note Taking



One of our teachers, Brady, has a YouTube channel full of great videos to help you study chemistry. He has made some specifically for you to use while completing this Preparation for Chemistry material. The first one is all about taking notes.

At BHASVIC Chemistry you will be expected to take your own notes in lesson. Having a good system to make sure you get all the important information / examples down is important. **Simply copying out loads of text from the book** *does not work!*

Below is how to effectively take notes from a lesson / your textbook.


1. Split up an A4 page as shown below:

- Watch the video "Brady Explains How To Find Charges" from **Box 2** on the blendspace link and add notes
- Now write the questions and key points/summary at the bottom of the page summing up what the page is about

An example of what a completed note page should look like (on a different topic):

Use your notes to help you with the activities later in the pack

Brady Explains ...

 Watch the Brady Explains video for Moving On Day from Box 3 on the blendspace link:

- Think carefuly about what Brady is saying while you are watching it and make notes about the key information
- Label the **periodic table on page 5** carefully. We will be assuming you have this knowledge when you start with us in September.
- Once you have watched the video then answer the questions on page 6. If you are not sure of any of the answers then watch the video again. Write all of your answers into the pack.

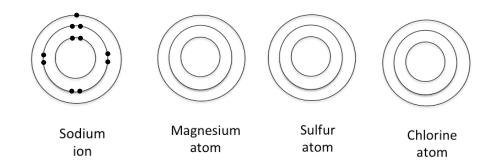
				_			I	
	[223] Fr franclum 87	132.9 Cs caesium 55	85.5 Rb rubidium 37	39.1 X potasssium 19	23.0 Na sodum 11	6.9 Li Illhium 3		_
	[226] Ra radium 88	137.3 Ba barlum 56	87.6 Sr strontlum 38	40.1 Ca caldum 20	24.3 Mg magnesium 12	9.0 Be beryllium 4		2
	[227] Ac* actinium 89	138.9 La* lanthanum 57	88.9 Y yttrium 39	45.0 Sc scandium 21				
140.1 Ce centum 58 232.0 Th thorium 90	[261] Rf rutherfordum 104	178.5 Hf hatnium 72	91.2 Zr zirconium 40	47.9 Ti tttanium 22		relati ato i atomic		
140.9 Pr praseovymlum 59 [231] Pa protadrinium 91	[262] Db dubrilum 105	180.9 Ta tantalum 73	92.9 Nb nloblum 41	50.9 Vanadum 23		relative atomic mass atomic symbol name atomic (proton) number	Key	
144.2 Nd neodymlum 60 238.1 U uranium 92	[266] Sg seaborglum 106	183.8 W tungsten 74	95.9 Mo molybdenum 42	52.0 Cr chromium 24		mass Ibol Iumber		
144.9 Pm promethum 61 [237] Np negtunium 93	[264] Bh bohrlum 107	186.2 Re rhenium 75	[98] Tc technetium 43	54.9 Mn manganese 25				
150.4 Sm Sm samanum 62 [242] Pu plutonium 94	[277] Hs hassium 108	190.2 Os osmium 76	101.1 Ru ruthenium 44	55.8 Fe Iron 26			1.0 H hydrogen 1	
152.0 Eu europlum 63 [243] Am ameridum 95	[268] Mt meltherium 109	192.2 Ir Iridium 77	102.9 Rh rhodium 45	58.9 Co cobat 27				
157.2 Gd gadoinium 64 [247] Cm curium 96	[271] Ds darmstadtlum	195.1 Pt platnum 78	106.4 Pd palladium 46	58.7 Ni nickel 28				
158.9 Tb techum 65 [245] Bk berkellum 97	[272] Rg roentgenlum 111	197.0 Au gold 79	107.9 Ag silver 47	63.5 Cu copper 29				
162.5 Dy dysproslum 66 [251] Cf californium 98	Elemen	200.6 Hg mercury 80	112.4 Cd cadmlum 48	65.4 Zn zinc 30			_	
164.9 Ho holmium 67 [254] Es einsteinium 99	s with ator	204.4 T 1 thailium 81	114.8 In Indium 49	69.7 Ga gallium 31	27.0 A1 aluminium 13	5 B.01		ω
167.3 Er entium 68 [253] Fm	nic numbe fully	207.2 Pb lead 82	118.7 Sn th 50	72.6 Ge germanlum 32	28.1 Si silicon 14	12.0 C carbon 6		4
168.9 Tm thulium 69 [256] Md mendelevium 101	mbers 112–116 ha fully authenticated	209.0 Bi bismuth 83	121.8 Sb antimory 51	74.9 As arsenic 33	31.0 P phosphorus 15	14.0 N nitrogen 7		51
173.0 Yb ytterbum 70 [254] No nobelium 102	Elements with atomic numbers 112–116 have been reported but not fully authenticated	[209] Po polonium 84	127.6 Te tellurlum 52	79.0 Se selenium 34	32.1 S sultur 16	16.0 O wygen 8		6
175.0 Lu ludetlum 71 [257] Lr lawrendum 103	en reporte	[210] At astatine 85	126.9 I lodine 53	79.9 Br bromline 35	35.5 C! chlorine 17	19.0 F fluorine 9		7
	d but not	[222] Rn radon 86	131.3 Xe xenon 54	83.8 Kr knypton 36	39.9 Ar argon 18	20.2 Ne neon 10	4.0 He hellum 2	0

Brady Explains Follow up questions

Using your periodic table on p4, answer the following questions:

- b. Give the symbols for three elements from group seven
- c. Write the symbol for an s-block element with a name that starts with P
- d. On the Periodic Table, label or colour code the s, p, d and f blocks
- e. Is Chlorine a metal or a non-metal? Give a one sentence explanation of your answer.
- f. Is Aluminium a metal or a non-metal? Give a one sentence explanation of your answer.
- g. Write down the mass number of Lead
- h. Write down the proton number of Sulfur
- i. Complete the table showing numbers of protons, neutrons and electrons. Think carefully about chlorine and magnesium.

	Hydrogen	Sodium	Magnesium	Carbon	Oxygen	Chlorine
Symbol						
Mass						
number						
Number						
of protons						
Number						
of						
neutrons						
Number						
of						
electrons						


Structure and Bonding

Brady goes over dot-and-cross diagrams in his video. For more help, use any GCSE revision website.

Atomic Structure

Complete the diagrams below to show the electron arrangement in each atom. The first one has been done for you.

Ionic Bonding

Complete the sentences below:

Metal atoms formelectrons.	ions by	one or more
Non-metal atoms form	ions by	one or

Draw dot-and-cross diagrams to show the ions in the following ionic compounds, showing **outer shell electrons only**,

Sodium Fluoride, NaF

Magnesium Sulfide, MgS	
Magnesium Chloride, MgCl₂	
Sodium Oxide, Na₂O	

Potassium nitride, K₃N

Covalent Bonding

Carbon dioxide, CO₂

Draw dot and cross diagrams to show the covalent bonding in the following molecules. You only need to show the outer shell in your diagrams.
Hydrogen molecule, H ₂
Methane molecule, CH ₄
Ammonia molecule, NH ₃
Oxygen molecule, O ₂

Using Moles Equations

There are 3 moles equations you *must* memorise off by heart (you will be using these **most** lessons).

Moles = volume x concentration moles = $\frac{\text{mass}}{\text{Ar}}$ moles = $\frac{\text{volume(gas)}}{24}$

It is also important to be able to re-arrange these equations. We will use **moles = volume x concentration** as an example

1) Let us rearrange the equation to get volume =

In maths, you can do whatever you like to an equation, so long as you do the same thing to both sides

So I will divide both sides by concentration

moles = volume x concentration

<u>moles</u> = volume x concentration concentration concentration

Next, I will cancel the concentrations

moles = volume x-concentration concentration

<u>moles</u> = volume concentration

Now let's look at moles = mass

Ar

2) We shall rearrange to get mass =

Remember, in maths you can do whatever you like to an equation, **so long as you do the same thing to both sides**

moles = mass

Ar

I shall multiply both sides by Ar

moles x Ar = mass x Ar

Ar

Next, I shall cancel the Ar's

moles x Ar = mass x

moles x Ar = mass

Now you try...

Use your newfound rearranging powers to solve these questions (*it may interest you to know that all of the values used in these questions are true*). Show all of your working (you can check your answers at the bottom of the page)

- 1. In the Hiroshima nuclear bomb, Uranium atoms are broken down to release energy (a lot of energy!). It is estimated that 0.1955 moles of Uranium were used. Find the mass of Uranium used in the Hiroshima nuclear bomb (the Ar of Uranium is 238.1).
- 2. The average human has a blood volume of 5 dm³. The official "lethal dose" of ethanol for an average human is 12.4 moles. What would the concentration of ethanol in an average humans blood need to be in order to be fatal?

- 3. Cyanide is one of the most deadly poisons in the world. Breathing in as little as 0.003846 moles will be fatal. What volume of cyanide gas would kill you?
- 4. Your stomach contains an average of 0.100 moles of hydrochloric acid (HCI) with a concentration of 0.100 mol dm⁻³. Find the volume of hydrochloric acid in your stomach.
- 5. A mysterious element was discovered that had similar properties to lead, but when left in oxygen turned a fantastic pinky-blue colour. Scientists weighed 2 moles of the element and found it had a mass of 418g. Find the Ar of the element and use the periodic table to suggest it's identity.

1) 46.5g 2) 2.48 mol dm⁻³ 3) 0.0923 dm³ 4) 1 dm³ 5) 209- Bismuth

Ionic Compounds: Forming Salts

At A-level, it is important to be confident writing the formulae of salts. Complete the missing formulae and names in the equations below. There some selected answers at the end. You might need to look up the metals in the periodic table to find out what group they are in.

CaO

Most people with double science GCSE have done this before but if this is new to you or you just want a reminder, we have made a 6 min animation you can **watch before you start.** Just go to **box 4** on the blendspace link

Met	al + Acid Rea	action	<u>s</u>						
1	Potassium	+	Hydrochloric acid		\rightarrow	Potass	Potassium chloride		Hydrogen
	K	+	HCl ·		\rightarrow			+	H_2
2	Barium	+	Sulfu	ıric acid	\rightarrow	Bar	ium sulfate	+	Hydrogen
	Ba	+	Н	$_2$ SO $_4$	\rightarrow			+	H_2
3	Calcium	+	Hydroc	hloric acid	\rightarrow	Calci	um chloride	+	Hydrogen
	Ca	+]	HCl	\rightarrow			+	H_2
4	Barium	+	Nit	ric acid	\rightarrow	Bar	ium nitrate	+	Hydrogen
	Ba	+	Н	INO_3	\rightarrow			+	H_2
5	Strontium	+	Nit	ric acid	\rightarrow			+	
	Sr	+	Н	INO_3	\rightarrow			+	
Met	al oxide + A	cid Re	actions						
6	Lithium (+	Hydrochlor	ric acid	\rightarrow	Lithium chlorid	e +	Water
	Li ₂ O		+	HCl		\rightarrow		_ +	H_2O
7	Magnesium	oxid	e +	Hydrochlor	ric acid	\rightarrow	Magnesium chloride	+	Water
	MgC)	+	HCl	-	→		_ +	H_2O
8	Potassium	oxide	+	Sulfuric	acid	\rightarrow	Potassium sulfat	e +	Water
	K_2O		+	H_2SC) ₄	\rightarrow		- +	H_2O
9	Aluminium	oxid	e +	Sulfuric	acid	\rightarrow	Aluminium sulfa	te +	Water
	Al_2O	3	+	H_2SC) ₄	\rightarrow		- +	H_2O
10	Calcium	oxide	+			\rightarrow	Calcium sulfate	+	

Selected Answers
$$S - K_2SO_4$$
, $S - AI_2(SO_4)_3$, $S - K_1SO_4$, $S - AI_2(SO_4)_3$

Metal hydroxide + Acid Reactions

11	Sodium hydroxide NaOH	+	Nitric acid HNO_3	$\overset{\Rightarrow}{\rightarrow}$	Sodium nitrate	+ +	Water H ₂ O
12	Lithium hydroxide LiOH	+	Sulfuric acid H ₂ SO ₄	$\overset{\Rightarrow}{\rightarrow}$	Lithium sulfate	+ +	Water H ₂ O
13	Calcium hydroxide $Ca(OH)_2$	+	Nitric acid HNO_3	$\overset{\Rightarrow}{\rightarrow}$	Calcium nitrate	+ +	Water H ₂ O
14	Calcium hydroxide $Ca(OH)_2$	+ +	Phosphoric acid H_3PO_4	$\overset{\Rightarrow}{\rightarrow}$	Calcium phosphate	+ +	Water H ₂ O
15	Aluminium hydroxide $Al(OH)_3$	+		$\overset{\Rightarrow}{\rightarrow}$	Aluminium nitrate	+	

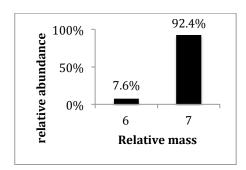
Metal carbonate + Acid Reactions

16	Strontium carbonate	+	Hydrochloric acid	\rightarrow	Strontium chloride	+	Water + Carbon dioxide
	SrCO_3	+	HCl	\rightarrow		+	$H_2O + CO_2$
17	Lithium carbonate	+	Phosphoric acid	\rightarrow	Lithium phosphate	+	Water + Carbon dioxide
	$\mathrm{Li}_{2}\mathrm{CO}_{3}$	+	H_3PO_4	\rightarrow		+	$H_2O + CO_2$
18	Potassium carbonate	+	Nitric acid	\rightarrow	Potassium nitrate	+	Water + Carbon dioxide
	K_2CO_3	+	HNO_3	\rightarrow		+	$H_2O + CO_2$
19	Sodium carbonate	+	Phosphoric acid	\rightarrow	Sodium phosphate	+	Water + Carbon dioxide
	Na_2CO_3	+	H_3PO_4	\rightarrow		+	$H_2O + CO_2$
20	Barium carbonate	+		\rightarrow	Barium chloride	+	+
	$BaCO_3$	+		\rightarrow		+	+
Mixe	<u>d</u>						
21	MgCO ₃ +		HCl →				

21	MgCO_3	+	HCl	\rightarrow	
22	CaO	+	HNO_3	\rightarrow	
23	Na	+	H_2SO_4	\rightarrow	
24	$Sr(OH)_2 \\$	+	HCl	\rightarrow	
25	Al_2O_3	+	H_3PO_4	\rightarrow	

Task 3: CHALLENGE

Can you balance all these equations?



Mass Spectrometry and Isotopes

Watch the short video on mass spectrometry from **Box 5** on blendspace. Some of this material may be new to you, so watch carefully, and when you have finished, answer the questions:

- 1) What is the definition of an isotope?
- 2) Label the diagram to show what each part means:

- 3) The symbols $^{35}_{17}{\rm Cl}$ and $^{37}_{17}{\rm Cl}$ are both used to represent chlorine atoms. Explain why.
- 4) Equation for working out the relative atomic mass (from the video):
- 5) Use the graph to work out the relative atomic mass of lithium. Show your working and give your answer to **2 decimal places**

answer:(to 2 d.p.)

6) Geologists use the amount of different isotopes in rock samples to work out how old they are. The uranium in a sample of rock was found to be 99.3% $^{238}_{92}$ U and 0.7% $^{235}_{92}$ U. What is the relative atomic mass of the uranium in the sample?

answer: (to 2 d.p.)